Chapter 3
Processes (part 1)

CS 3423 Operating Systems
National Tsing Hua University

Outline

Process concept

Process scheduling
Operations on processes
Interprocess communication
Example IPC

Client-Server Systems

Objectives

Introduce the notion of a process

* a program in execution, basis of all computation

Describe the various features of processes

* scheduling, creation and termination, communication

Explore interprocess communication

 shared memory and message passing

Describe communication in client-server
systems

Process Concept

Program vs. Process

* Program

e executable code

* Process
e an instance of a program in execution
* i.e., has started running; not yet finished

 possibly multiple instances of a program (e.g.
multiple users running same email client on the

same computer)

Terminology

'process”

« standard usage nowadays = instance of a running program
IIJ‘ObII

« synonym with "process" , but "process" is preferred

» from scheduling literature (Operations Research)
"job-shop scheduling"

Iltaskll

« informal word for process ("multitasking"), possibly from user's
point of view of "a unit of work that needs to be done"

 from real-time systems, maybe lighter weight than process

Process in Memory

code segment (“text section”)

. Mmax
data section, for global vars «—— temporary data (e.q.

function parameters,
return addresses,
l local variables)

stack
stack: for (auto) local vars of

functions, parameters passed
to function call, return address

heap: dynamically allocated |
variables (incl. objects) <—— dynamic allocation
heap (e.g. class object,
program state: (program pointer object)
. data <«—— global variables
counter, registers)
text <«—— code

a set of associated resources
(e.g., open file handles)

Process state

New
» the process is being created (by the OS)
Ready

» the process is in memory, can be assigned to a processor, but is
not currently running.

Running
* the process's instructions are being executed by the processor
Waiting
* the process is waiting for some event ("blocked"), could be 1/0

Terminated

« the process has finished execution; its space can be reclaimed

Diagram of Process State

« Only one process is Running on any processor at any time

» However, several processes may be Ready or Waiting

o admitted interrupt exit

scheduler dispatch

/O or event completion /O or event wait

Process Control Block (PCB)

Information associated with each process

* also called task control block
Process state — RUNNING, WAITING, etc
Program counter, CPU registers
CPU scheduling information

* priorities, scheduling queue pointers

Memory-management information

« memory allocated to the process

Accounting information —

» CPU used, clock time elapsed since start, time limits
/O status information —

* 1/O devices allocated to process, list of open files

To next PCB

Process
state

pointer

process number

program counter

registers

memory limits

list of open files

10

Threads

 aka “lightweight processes”

* a basic unit of program execution

* Multiple threads may belong to one process

 Threads of a given process share...

e code section, data section, OS resources

 Fach thread has its own...

» thread ID, program counter, register set, and stack

11

Review (1)

Definition of a process?

Difference between process and thread?
What are possible Process States?

What is a PCB, and what is its content?

How does Context Switch work?

12

Process
Scheduling

Process Scheduling

* OS Purpose

* Multiprogramming: maximize CPU utilization
(i.e., runs some process at all times)

* Time-sharing: interactivity, short latency
(i.e., switches CPU frequently so user can interact

with programs)

 Scheduling

» OS decides when to run each process and for
how long

14

Scheduling terms

* Degree of multiprogramming

« number of processes kept in memory
(as opposed to swapped out of main memory to disk)

* 1/O-bound processes
* spends more time doing I/O than computing
« many short CPU bursts

« CPU-bound processes

* spends more time doing computation

» few but long CPU bursts

15

Process Scheduling Queues

 Processes can migrate between different queues
(i.e., switch among states)

 Job queue (NEW state)

« set of all processes in the system

» Ready queue (processes in READY state)

« set of all processes residing in main memory, ready and
waliting to execute

» |/O queue

» set of process (in WAIT state) waiting for an I/O device

16

"Queue Diagram" representation
of Process Scheduling

{cru]
) @<— /O wait queue [—— /O request |«—

time slice
expired

. child child termination| create child |
terminates wait queue process(fork)
interrupt interrupt wait | wait foran |

occurs queue Interrupt

Process Scheduling Queues

/0 queue<

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit 0

terminal
unit O

PCB,

o /

PCB,,

registers

PCB,

queue header PCB,

head »

el registers
head —T——=

LI
head T——=

tal 4+— _ "CBs

"
head 4
PCB;
head —T—> T
@l 4+

18

Context SW|tch

time process Po

executing Interrupt or
system call

idle

save Pp's state into
PCBg

select next process,

to run, choose P;

restore Pq's state
from PCB;

save Pi's state into
PCB,

select next Process,

to run, choose Py

restore Py's state
from PCBy

process Pi
idle
— -
executing
interruptor N/
system call
idle

19

Context Switch

 Switch to a different process to run

 Kernel saves the state of currently running process

 Kernel restores the saved state of the target
Drocess

e Overhead

* time spent by OS, not productive time for the user

* switching time: 1-1000 ms, depending on
memory speed, #registers

20

Hardware support for context
switching

* instruction for store/load multiple registers

« ARM instructions load, store, push, pop multiple regs
LDM {r2, 1r} ;5 (load multiple)
STM {r2, 1lr} ;5 (store multiple)
PUSH {r@,r4-r7}
POP {ro,rilo,pc}

-- all work on multiple regs

» Register windows

« Sun SPARC ISA uses sliding register windows
« 8051 has four register banks

21

Multitasking in Mobile Systems

Ul provides important hint on what needs to be scheduled

* Single foreground process -- controlled via user interface

« Multiple background processes — in memory, running, but not on the
display, and with limits

* Limits include single, short task, receiving notification of events, specific
long-running tasks like audio playback

* Purposes
¢ Saves power, Improve responsiveness
* Android runs foreground and background, with fewer limits

* A background process uses a service to perform tasks

* A service can keep running even if the background process is suspended

* A service has no user interface; is small in memory use

22

Review: Context Switch

» CPU switches to another process

* OS must save the state (register, etc) of the old process

« OS loads the saved state for the new process via a
context switch

« PCB: representation of Context of a process

 Overhead reduction

« Some hardware provides multiple sets of registers per
CPU => multiple contexts loaded at once

« efficient coding and data structure

23

Operations on
Processes

Operations on processes

» process Creation

» fork() = clone, exec() = replace

* process Termination

* exit() = voluntary, abort() = involuntary

* wait() = sync with terminating child process

e in addition to process switching

* save / restore state, pick next to run (scheduling)

25

Process Creation

e parent process creates children processes

« family tree

 each process has a unique identifier (pid)

 Unix command ps -ael

Ists active processes

26

Options of Process Creation

 Sharing options:
* share all resources
* child shares subset
* no sharing

* Execution options

e concurrent execution

 parent waits until all children terminate

27

Address Space Options

« child is a duplicate of parent
o child runs the same program image as parent
e communicate via shared variable

e child program is not a duplicate

» program replaced by a newly loaded program

¢ communicate via message passing

23

fork() system call

 parent clones itself

* child process duplicates address space of the
parent (i.e., a copy)

» child and parent execute concurrently after fork

 return value of fork()

 child gets ©

 parents gets pid of child

29

exec () system call

o exec():
* replaces process itself with specified program (in args)

* restart process

e Return value?

e If successful, exec() does not return! because it runs the new program

 But if error (e.g., program not found) then returns -1 with error code in a
global variable errno

* API variants of exec:
« execlp(), execl(), execle(): path, arg0, arg1, ..., NULL

« execv(), execvp(): path, argv[]

« execvP(): file, searchpath, argv|[]

30

Process Creation in Unix/Linux

Data memory
* Old implementation:

* child is a full copy of parent

« Current implementation: copy-on-write

* no need to store extra copy of same data;

* saves work of copying => both more efficient

free memory

free memory

free memory

B

A’s child

free memory

B

C

A

free memory

B

kernel

A

free memory

Originally

kernel

A

After A does
an fork

kernel

After the child

does an execlp

31

Unix Example

#include <stdio.h>

#include <unistd.h> // for fork()
#include <sys/wait.h> // for wait()
void main() {

pid_t A = fork(); .

if (1A) { // child Output:
printf("child\n"); pa?ent
execlp("/bin/1s", "1s", NULL); child

} else { // parent a.out hello.c readme.txt
printf("parent\n"); . child 32185 done
int status; process 32185 ends
pid t pid=wait(&status);
printf("child %d done\n", pid);

}

printf("process %d ends\n", A);

} parent wait() resumes "

» implicit exit by child

32

Shell example

Parses command line

« extract program name and arguments

calls fork()

* to create new process for new program

Child process calls exec ()

* to load in new program, becomes new program

Parent:

» can either continue running shell or wait () for child to finish

33

Process Termination

 option 1: voluntary
« exit(status): for child to finish & return exit status to parent

» could be implicit exit upon return from main()

 option 2: involuntary (killed)

« kill(pid, sig): parentterminates child process by pid

* Why? (1) child exceeds resource quota, (2) task no longer needed,
(3) OS may have cascaded termination policy

« OS clean-up:
« OS reclaims all resources: memory, open files, 1/0 buffers

» cascaded termination: parent dies => kill all its children (recursive)

34

Process Termination

« wait() system call
* called by parent to wait for one of its child processes to terminate
« get that child's return status (exit code) pid = wait(&status);

« OS won't release (recycle) child pid and table entry till parent calls wait()!

* zombie process

* dead child process that died before its parent calls wait() to find out...

« zombie pid released when parent calls wait()

* Orphan process:
» a child process (alive) whose parent died

* Solution: an ancestor process could call wait() to collect orphans
Root process: init (traditional Unix) or systemd (Linux)

35

Interprocess

Communication
(IPC)

Multiple processes

» Communicate or run independently?

* independent: no resource sharing other than
running on same processor

e communicating processes or threads: exchange data

e reasons for |IPC

e sharing data
 speedup (multiple processors only)

 convenience, modularity

37

Communication methods

 Shared memory

* requires more careful user

synchronization

 implemented by memory access, (i.e.,

read/write) faster speed

 doesn't work across machines

* Message passing

send(msg), receive(msg)
as system calls

no conflict; call may block;
more efficient for smaller data

on same machine or different machines

message shared
passing memory

process A process A

process B L shared memory |«

process B -
message queue
> Mo My Mo Mg ... |Mp e
kernel kernel
(a) (b)

38

Interprocess Communication

 |[PC Models
 Shared Memory

* Message passing

39

Shared Memory

Establishing a region of shared memory
« same address space or different spaces but mapped by OS

e Doesn't work across machines!

Used for faster performance
* no need for data copying; just work on shared data

* OS involved only during setup, but not during actual read/write!
Need to determine the form of data and location

e text or binary, struct, semantics

Ensure data not written simultaneously inconsistently

* synchronize by locking or scheduling

40

Problem of
Producer-Consumer

* Producer-Consumer loop

Producer outputs data, Consumer inputs data

 Possible use of buffer: queue (FIFO) with size B

in-pointer: next free position el

— out

out-pointer: position of first available

FIFO empty when in == out in —>

FIFO full when (in+1)%B == out

This allows at most B-1 items in the queue, since one can't tell it
the buffer is empty or full.

e Constraints: bounded vs unbounded buffer

41

Pseudocode for
Shared memory Producer

* item next_produced; // item is a data type
while (true) {
next_produced = make_item();
while(((in+1)%BUFFER_SIZE)==out) {
// buffer is full, so we wait (polling)
// assume consumer can run when in — out
// producer is polling.
yield; // cooperative; nothing if preemptive

} (In+1)%BUFFE_SIZE

buffer[in] = next_produced,;

in = (in+1)%BUFFER_SIZE; == out

// in is modified only by producer means full
J

42

Pseudocode for
Shared memory Consumer

* item next_consumed; // item is a data type

while (true) {
while (in==out) {
// buffer is empty, so we wait (polling)
// assume producer can run when

// the consumer polls.
yield; // if cooperative; nothing if preemptive

} in_> -~ out
next_consumed = buffer[out];
out = (out+1) % BUFFER_SIZE; :

IN == out

// out is modified only by consumer
use_item(next_consumed);

j

means empty

43

Interprocess Communication

* Message passing

44

Message-Passing Communication

* Mechanism for processes to communicate and
synchronize their actions

 processes communicate without resorting to shared variables
» Two fundamental operations for IPC (pseudocode)
« send(h, msg) // could be fixed- or variable message size

« receive(h, &buf) // # bytes, status may be additional params

* Assumption before communicate

* processes need to establish a communication link first!!!

 h(asin send(h, msg), receive(h, &buf)) could be a "handle"
to the link, a process, or mailbox

45

Communication Links In
Message Passing

How are links established?
Can a link be associated with > 2 processes?

Between two processes, how many links
can there be? (multiplicity)

What is the link capacity?
Data length: fixed- or variable-sized msg?

Is the link unidirectional or bidirectional?

46

Implementation of

Communication Links
 Physical link

* shared memory
 hardware bus

* network
* Logical
* Naming: direct or indirect? symmetric or asymmetric naming?

* Synchrony: blocking or nonblocking? (synchronous vs.
asynchronous)

* Buffering: automatic or explicit buffering?

» Data Copying: send by copy or by reference?

Direct (message passing)
Communication

* Processes must name each other explicitly

» send(P, message): send message to process P

* receive(Q, &buf): receive a msg from process Q into

buf
 Properties of communication link

* Links are established automatically (or hardwired)

* One link is associated with exactly two processes, and
between a pair of processes, there exists exactly one link

* They may be bidirectional (usual) or unidirectional

43

Process symmetry

e symmetric
e sender and receiver name each other

* send(P, msg) receive(Q, &buf)

e asymmetric:

* sender names the target process to send to

* receiver receives from ANY process and gets
sender 1D

49

Producer-consumer by
Direct Communication

 /* producer */
« while (1) {

send(consumer, nextProduced);

J

e /* consumer */

« while(T) {
receive(producer, nextConsumed);

J
e Issue: Limited modularity

» if name of a process changed, all old names need to be
updated

50

Indirect Communication

* Mailbox, aka ports

* send message to mailbox or receive from mailbox, Mailbox
instead of direct send-receive

 Each mailbox has a unique ID
 processes must share a mailbox in order to communicate
* Link properties
* Link established only if processes share a common mailbox

* a link may be associated with multiple processes

* Each pair of processes may share several communication links

Link may be unidirectional or bidirectional

51

Indirect Communication

» Operations
* create a new mailbox (port)
 send and receive messages through mailbox
* destroy a mailbox
e Primitives
» send(A, msg) // send msg to mailbox A

* receive(A, &buf) // receive a msg from mailbox A

52

Indirect Communication

* What happens when mailbox is shared?
e Py, Py, P3 share mailbox A
e Pqsends; P, and P3 both receive
* Who gets the message?

* Possible options (OS dependent)

1. Allow a link to be associated with at most two processes

2. Allow only one process at a time to execute a receive()
operation

3. Allow the system to select arbitrarily the receiver

4. Sender is notified who the receiver was.

53

Synchrony in Messaging

 Blocking (“synchronous”) call:

e send/receive does not return till done
=> how regular functional calls work

» Nonblocking (“asynchronous”) call:

* send/receive returns immediately,
even before the communication is completed!!

* a separate call to check if done (like polling)

* may also use a callback for notification!

54

Synchrony in send/receive

 Blocking send:

» sender is blocked until the message is received by the receiver or
mailbox

* Blocking receive:

* receiver is blocked until a message has arrived and can be received

* Nonblocking send:

* sender writes message to a buffer and continues operation without
waiting for send to complete => buffer is required!

* Nonblocking receive:

* sender receives either an arrived (and queued) memory or receives
no message, but does not block in either case.

55

Buffer and Synchrony

e /ero buffer

 blocking send, blocking receive (rendezvous)
=> earlier one blocks until the later one ready to
exchange

 Bounded buffer

* sender is blocked if buffer is full; else not blocked

» receiver blocked if buffer is empty; else not blocked

 Unbounded bufter

 sender never blocks; receiver blocks only if buffer empty

56

Review (3)

» Shared memory vs Message Passing
 Direct vs Indirect message-passing

 Blocking vs Nonblocking

57

