
Chapter 3
Processes (part 1)

CS 3423 Operating Systems
National Tsing Hua University

 1

Outline
• Process concept

• Process scheduling

• Operations on processes

• Interprocess communication

• Example IPC

• Client-Server Systems

 2

Objectives
• Introduce the notion of a process

• a program in execution, basis of all computation

• Describe the various features of processes

• scheduling, creation and termination, communication

• Explore interprocess communication

• shared memory and message passing

• Describe communication in client-server
systems

�3

Process Concept

 4

Program vs. Process
• Program

• executable code

• Process
• an instance of a program in execution

• i.e., has started running; not yet finished

• possibly multiple instances of a program (e.g.
multiple users running same email client on the
same computer)

 5

Terminology
• "process"

• standard usage nowadays = instance of a running program

• "job"
• synonym with "process" , but "process" is preferred

• from scheduling literature (Operations Research)  
"job-shop scheduling"

• "task"
• informal word for process ("multitasking"), possibly from user's

point of view of "a unit of work that needs to be done"

• from real-time systems, maybe lighter weight than process

 6

Process in Memory
• code segment (“text section”)

• data section, for global vars

• stack: for (auto) local vars of
functions, parameters passed
to function call, return address

• heap: dynamically allocated
variables (incl. objects)

• program state: (program
counter, registers)

• a set of associated resources
(e.g., open file handles)

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 5

Process in Memory

temporary data (e.g.
function parameters,
return addresses,
local variables)

global variables

code

dynamic allocation
(e.g. class object,
pointer object)

 7

Process state
• New

• the process is being created (by the OS)

• Ready
• the process is in memory, can be assigned to a processor, but is

not currently running.

• Running
• the process's instructions are being executed by the processor

• Waiting
• the process is waiting for some event ("blocked"), could be I/O

• Terminated
• the process has finished execution; its space can be reclaimed

 8

Diagram of Process State
• Only one process is Running on any processor at any time

• However, several processes may be Ready or Waiting

 9

Process Control Block (PCB)
• Information associated with each process

• also called task control block

• Process state – RUNNING, WAITING, etc

• Program counter, CPU registers

• CPU scheduling information

• priorities, scheduling queue pointers

• Memory-management information
• memory allocated to the process

• Accounting information –
• CPU used, clock time elapsed since start, time limits

• I/O status information –

• I/O devices allocated to process, list of open files

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 9

Process Control Block (PCB)
Info. associated with each process
� Process state
� Program counter
� CPU registers
� CPU scheduling information
 (e.g. priority)
� Memory-management information
 (e.g. base/limit register)
� I/O status information
� Accounting information

To next PCB

 10

Threads
• aka “lightweight processes”

• a basic unit of program execution

• Multiple threads may belong to one process

• Threads of a given process share…
• code section, data section, OS resources

• Each thread has its own…
• thread ID, program counter, register set, and stack

 11

Review (1)
• Definition of a process?

• Difference between process and thread?

• What are possible Process States?

• What is a PCB, and what is its content?

• How does Context Switch work?

 12

Process
Scheduling

 13

Process Scheduling
• OS Purpose

• Multiprogramming: maximize CPU utilization  
(i.e., runs some process at all times)

• Time-sharing: interactivity, short latency  
(i.e., switches CPU frequently so user can interact
with programs)

• Scheduling
• OS decides when to run each process and for

how long

 14

Scheduling terms
• Degree of multiprogramming

• number of processes kept in memory  
(as opposed to swapped out of main memory to disk)

• I/O-bound processes

• spends more time doing I/O than computing

• many short CPU bursts

• CPU-bound processes

• spends more time doing computation

• few but long CPU bursts

 15

Process Scheduling Queues
• Processes can migrate between different queues

(i.e., switch among states)

• Job queue (NEW state)

• set of all processes in the system

• Ready queue (processes in READY state)

• set of all processes residing in main memory, ready and
waiting to execute

• I/O queue

• set of process (in WAIT state) waiting for an I/O device

 16

"Queue Diagram" representation
of Process Scheduling

 17

ready queue CPU

I/O requestI/O wait queueI/O

time slice
expired

create child
process(fork)

wait for an
interrupt

interrupt wait
queue

child termination
wait queue

child
terminates

interrupt
occurs

Process Scheduling Queues

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 16

Process Scheduling Queues

I/O queue

 18

Context Switch

 19

process P0 OS process P1time
executing interrupt or

system call
save P0's state into

PCB0

select next process, 
to run, choose P1

restore P1's state
from PCB1

executing

save P1's state into
PCB2

select next process, 
to run, choose P0

restore P0's state
from PCB0

executing

idle

idle

idle

interrupt or
system call

Context Switch
• Switch to a different process to run

• Kernel saves the state of currently running process

• Kernel restores the saved state of the target
process

• Overhead

• time spent by OS, not productive time for the user

• switching time: 1-1000 ms, depending on
memory speed, #registers

 20

Hardware support for context
switching

• instruction for store/load multiple registers

• ARM instructions load, store, push, pop multiple regs 
LDM			{r2,	lr}				;;	(load	multiple)	 
STM			{r2,	lr}				;;	(store	multiple)	 
PUSH		{r0,r4-r7} 
POP			{r0,r10,pc}	 
-- all work on multiple regs

• Register windows

• Sun SPARC ISA uses sliding register windows

• 8051 has four register banks

 21

Multitasking in Mobile Systems
• UI provides important hint on what needs to be scheduled

• Single foreground process -- controlled via user interface

• Multiple background processes – in memory, running, but not on the
display, and with limits

• Limits include single, short task, receiving notification of events, specific
long-running tasks like audio playback

• Purposes

• Saves power, improve responsiveness

• Android runs foreground and background, with fewer limits
• A background process uses a service to perform tasks

• A service can keep running even if the background process is suspended

• A service has no user interface; is small in memory use

�22

Review: Context Switch
• CPU switches to another process

• OS must save the state (register, etc) of the old process

• OS loads the saved state for the new process via a
context switch

• PCB: representation of Context of a process

• Overhead reduction
• Some hardware provides multiple sets of registers per

CPU ➔ multiple contexts loaded at once

• efficient coding and data structure

�23

Operations on
Processes

 24

Operations on processes
• process Creation

• fork() = clone, exec() = replace

• process Termination
• exit() = voluntary, abort() = involuntary

• wait() = sync with terminating child process

• in addition to process switching
• save / restore state, pick next to run (scheduling)

 25

Process Creation
• parent process creates children processes

• family tree

• each process has a unique identifier (pid)
• Unix command ps	-ael 

lists active processes

 26

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

Options of Process Creation
• Sharing options:

• share all resources

• child shares subset

• no sharing

• Execution options
• concurrent execution

• parent waits until all children terminate

 27

Address Space Options
• child is a duplicate of parent

• child runs the same program image as parent

• communicate via shared variable

• child program is not a duplicate
• program replaced by a newly loaded program

• communicate via message passing

 28

fork() system call
• parent clones itself

• child process duplicates address space of the
parent (i.e., a copy)

• child and parent execute concurrently after fork

• return value of fork()

• child gets 0

• parents gets pid of child

 29

exec() system call
• exec():

• replaces process itself with specified program (in args)

• restart process

• Return value?
• If successful, exec() does not return! because it runs the new program

• But if error (e.g., program not found) then returns -1 with error code in a
global variable errno

• API variants of exec:

• execlp(), execl(), execle(): path, arg0, arg1, ..., NULL

• execv(), execvp(): path, argv[]

• execvP(): file, searchpath, argv[]

 30

Process Creation in Unix/Linux
Data memory

• Old implementation:
• child is a full copy of parent

• Current implementation: copy-on-write
• no need to store extra copy of same data;

• saves work of copying => both more efficient

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 26

UNIX/Linux Process Creation
� Memory space of fork():

¾ Old implementation: A’s child is an exact copy of parent
¾ Current implementation: use copy-on-write technique to

store differences in A’s child address space

Originally

free memory

B

free memory

A
kernel

free memory

B

free memory

A
kernel

A’s child

After A does
an fork

free memory

C

B

free memory

A
kernel

After the child
does an execlp 31

Unix Example
#include	<stdio.h>	
#include	<unistd.h>	//	for	fork()	
#include	<sys/wait.h>	//	for	wait() 
void	main()	{ 
		pid_t	A	=	fork(); 
		if	(!A)	{	//	child 
				printf("child\n"); 
				execlp("/bin/ls",	"ls",	NULL); 
		}	else	{	//	parent 
				printf("parent\n"); 
				int			status; 
				pid_t	pid=wait(&status); 
				printf("child	%d	done\n",	pid); 
		} 
		printf("process	%d	ends\n",	A); 
}

Output:
parent	
child	
a.out	hello.c	readme.txt	
child	32185	done	
process	32185	ends

 32

wait()

execlp() implicit exit by child

Shell example
• Parses command line

• extract program name and arguments

• calls fork()

• to create new process for new program

• Child process calls exec()

• to load in new program, becomes new program

• Parent:

• can either continue running shell or wait() for child to finish

 33

Process Termination
• option 1: voluntary

• exit(status): for child to finish & return exit status to parent

• could be implicit exit upon return from main()

• option 2: involuntary (killed)

• kill(pid,	sig): parent terminates child process by pid

• Why? (1) child exceeds resource quota, (2) task no longer needed,
(3) OS may have cascaded termination policy

• OS clean-up:

• OS reclaims all resources: memory, open files, I/O buffers

• cascaded termination: parent dies => kill all its children (recursive)

 34

Process Termination
• wait() system call

• called by parent to wait for one of its child processes to terminate

• get that child's return status (exit code) pid	=	wait(&status);	

• OS won't release (recycle) child pid and table entry till parent calls wait()!

• zombie process
• dead child process that died before its parent calls wait() to find out...

• zombie pid released when parent calls wait()

• Orphan process:
• a child process (alive) whose parent died

• Solution: an ancestor process could call wait() to collect orphans 
Root process: init (traditional Unix) or systemd (Linux)

�35

Interprocess
Communication

(IPC)

 36

Multiple processes
• Communicate or run independently?

• independent: no resource sharing other than
running on same processor

• communicating processes or threads: exchange data

• reasons for IPC

• sharing data

• speedup (multiple processors only)

• convenience, modularity

 37

Communication methods
• Shared memory

• requires more careful user
synchronization

• implemented by memory access, (i.e.,
read/write) faster speed

• doesn't work across machines

• Message passing

• send(msg), receive(msg) 
as system calls

• no conflict; call may block;  
more efficient for smaller data

• on same machine or different machines

message
passing

shared
memory

 38

Interprocess Communication
• IPC Models

• Shared Memory

• Message passing

• Examples: Shared memory
• POSIX

• Examples: Message Passing
• Mach IPC, Pipes

• Sockets vs. Remote procedure calls

 39

Shared Memory
• Establishing a region of shared memory

• same address space or different spaces but mapped by OS

• Doesn't work across machines!

• Used for faster performance
• no need for data copying; just work on shared data

• OS involved only during setup, but not during actual read/write!

• Need to determine the form of data and location
• text or binary, struct, semantics

• Ensure data not written simultaneously inconsistently
• synchronize by locking or scheduling

 40

Problem of  
Producer-Consumer

• Producer-Consumer loop
• Producer outputs data, Consumer inputs data

• Possible use of buffer: queue (FIFO) with size B
• in-pointer: next free position

• out-pointer: position of first available

• FIFO empty when in == out

• FIFO full when (in+1)%B == out

• This allows at most B-1 items in the queue, since one can’t tell if
the buffer is empty or full.

• Constraints: bounded vs unbounded bufferChapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 37

Consumer & Producer Problem

in

out

� Producer process produces information that is
consumed by a Consumer process

� Buffer as a circular array with size B
¾ next free: in
¾ first available: out
¾ empty: in = out
¾ full: (in+1) % B = out

� The solution allows at most (B-1) item in the buffer
¾ Otherwise, cannot tell the buffer is fall or empty

 41

Pseudocode for  
Shared memory Producer

• item next_produced; // item is a data type 
while (true) { 
 next_produced = make_item(); 
 while(((in+1)%BUFFER_SIZE)==out) { 
 // buffer is full, so we wait (polling) 
 // assume consumer can run when  
 // producer is polling. 
 yield; // cooperative; nothing if preemptive 
 } 
 buffer[in] = next_produced;  
 in = (in+1)%BUFFER_SIZE;  
 // in is modified only by producer 
}

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 38

/*producer*/
while (1) {
 while (((in + 1) % BUFFER_SIZE) == out)
 ; //wait if buffer is full
 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
}

/*consumer*/
while (1) {
 while (in == out); //wait if buffer is empty
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
}

Shared-Memory Solution

/* global data structure */
#define BUFSIZE 10
item buffer[BUFSIZE];
int in = out = 0;

in out

in out

“in” only modified by producer

“out” only modified by consumer
 42

(in+1)%BUFFE_SIZE  
== out 

means full

Pseudocode for  
Shared memory Consumer

• item next_consumed; // item is a data type  
while (true) {  
 while (in==out) {  
 // buffer is empty, so we wait (polling)  
 // assume producer can run when  
 // the consumer polls.  
 yield; // if cooperative; nothing if preemptive  
 } 
 next_consumed = buffer[out];  
 out = (out+1) % BUFFER_SIZE;  
 // out is modified only by consumer  
 use_item(next_consumed);  
}

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 38

/*producer*/
while (1) {
 while (((in + 1) % BUFFER_SIZE) == out)
 ; //wait if buffer is full
 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
}

/*consumer*/
while (1) {
 while (in == out); //wait if buffer is empty
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
}

Shared-Memory Solution

/* global data structure */
#define BUFSIZE 10
item buffer[BUFSIZE];
int in = out = 0;

in out

in out

“in” only modified by producer

“out” only modified by consumer

 43

in == out  
means empty

Interprocess Communication
• IPC Models

• Shared Memory

• Message passing

• Examples: Shared memory
• POSIX

• Examples: Message Passing
• Mach IPC, Pipes

• Sockets vs. Remote procedure calls

 44

Message-Passing Communication
• Mechanism for processes to communicate and

synchronize their actions
• processes communicate without resorting to shared variables

• Two fundamental operations for IPC (pseudocode)
• send(h,	msg) // could be fixed- or variable message size

• receive(h,	&buf) // # bytes, status may be additional params

• Assumption before communicate
• processes need to establish a communication link first!!!

• h (as in send(h,	msg), receive(h,	&buf)) could be a "handle"
to the link, a process, or mailbox

 45

Communication Links in  
Message Passing

• How are links established?

• Can a link be associated with > 2 processes?

• Between two processes, how many links
can there be? (multiplicity)

• What is the link capacity?

• Data length: fixed- or variable-sized msg?

• is the link unidirectional or bidirectional?

 46

Implementation of
Communication Links

• Physical link

• shared memory

• hardware bus

• network

• Logical

• Naming: direct or indirect? symmetric or asymmetric naming?

• Synchrony: blocking or nonblocking? (synchronous vs.
asynchronous)

• Buffering: automatic or explicit buffering?

• Data Copying: send by copy or by reference?

 47

Direct (message passing)
Communication

• Processes must name each other explicitly
• send(P,	message): send message to process P

• receive(Q,	&buf): receive a msg from process Q into
buf

• Properties of communication link
• Links are established automatically (or hardwired)

• One link is associated with exactly two processes, and  
between a pair of processes, there exists exactly one link

• They may be bidirectional (usual) or unidirectional

 48

Process symmetry
• symmetric

• sender and receiver name each other

• send(P, msg) receive(Q, &buf)

• asymmetric:
• sender names the target process to send to

• receiver receives from ANY process and gets
sender ID

 49

Producer-consumer by  
Direct Communication

• /* producer */
• while (1) { 

 send(consumer, nextProduced);  
}

• /* consumer */
• while(1) { 

 receive(producer, nextConsumed);  
}

• Issue: Limited modularity

• if name of a process changed, all old names need to be
updated

 50

Indirect Communication
• Mailbox, aka ports

• send message to mailbox or receive from mailbox, 
instead of direct send-receive

• Each mailbox has a unique ID

• processes must share a mailbox in order to communicate

• Link properties

• Link established only if processes share a common mailbox

• a link may be associated with multiple processes

• Each pair of processes may share several communication links

• Link may be unidirectional or bidirectional

Chapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 45

Indirect Communication
� Mailbox sharing

� Solutions
¾ Allow a link to be associated with at most two processes
¾ Allow only one process at a time to execute a receive

operation
¾ Allow the system to select arbitrarily a single receiver.

Sender is notified who the receiver was

P1 P2 P3

Mailbox

send recv? recv?

 51

Indirect Communication
• Operations

• create a new mailbox (port)

• send and receive messages through mailbox

• destroy a mailbox

• Primitives
• send(A, msg) // send msg to mailbox A

• receive(A, &buf) // receive a msg from mailbox A

 52

Indirect Communication
• What happens when mailbox is shared?

• P1, P2, P3 share mailbox A

• P1 sends; P2 and P3 both receive

• Who gets the message?

• Possible options (OS dependent)

1. Allow a link to be associated with at most two processes

2. Allow only one process at a time to execute a receive()
operation

3. Allow the system to select arbitrarily the receiver

4. Sender is notified who the receiver was.

 53

Synchrony in Messaging
• Blocking (“synchronous”) call:

• send/receive does not return till done  
=> how regular functional calls work

• Nonblocking (“asynchronous”) call:
• send/receive returns immediately,  

even before the communication is completed!!

• a separate call to check if done (like polling)

• may also use a callback for notification!

 54

Synchrony in send/receive
• Blocking send:

• sender is blocked until the message is received by the receiver or
mailbox

• Blocking receive:
• receiver is blocked until a message has arrived and can be received

• Nonblocking send:
• sender writes message to a buffer and continues operation without

waiting for send to complete => buffer is required!

• Nonblocking receive:
• sender receives either an arrived (and queued) memory or receives

no message, but does not block in either case.

 55

Buffer and Synchrony
• Zero buffer

• blocking send, blocking receive (rendezvous) 
=> earlier one blocks until the later one ready to
exchange

• Bounded buffer
• sender is blocked if buffer is full; else not blocked

• receiver blocked if buffer is empty; else not blocked

• Unbounded buffer
• sender never blocks; receiver blocks only if buffer empty

 56

Review (3)
• Shared memory vs Message Passing

• Direct vs Indirect message-passing

• Blocking vs Nonblocking

 57

