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Outline
• Process concept 

• Process scheduling 

• Operations on processes 

• Interprocess communication 

• Example IPC 

• Client-Server Systems
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Objectives
• Introduce the notion of a process  

• a program in execution, basis of all computation 

• Describe the various features of processes 

• scheduling, creation and termination, communication 

• Explore interprocess communication  

• shared memory and message passing 

• Describe communication in client-server 
systems
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Process Concept
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Program vs. Process
• Program 

• executable code 

• Process 
• an instance of a program in execution 

• i.e., has started running; not yet finished 

• possibly multiple instances of a program (e.g. 
multiple users running same email client on the 
same computer)

 5



Terminology
• "process" 

• standard usage nowadays = instance of a running program 

• "job"  
• synonym with "process" , but "process" is preferred 

• from scheduling literature (Operations Research)  
"job-shop scheduling" 

• "task" 
• informal word for process ("multitasking"), possibly from user's 

point of view of "a unit of work that needs to be done" 

• from real-time systems, maybe lighter weight than process
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Process in Memory
• code segment (“text section”) 

• data section, for global vars 

• stack: for (auto) local vars of 
functions, parameters passed 
to function call, return address 

• heap: dynamically allocated 
variables (incl. objects) 

• program state: (program 
counter, registers) 

• a set of associated resources 
(e.g., open file handles)
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Process in Memory 

temporary data (e.g. 
function parameters, 
return addresses,  
local variables) 

global variables 

code 

dynamic allocation  
(e.g. class object,  
pointer object) 
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Process state
• New 

• the process is being created (by the OS) 

• Ready 
• the process is in memory, can be assigned to a processor, but is 

not currently running. 

• Running 
• the process's instructions are being executed by the processor 

• Waiting 
• the process is waiting for some event ("blocked"), could be I/O 

• Terminated 
• the process has finished execution; its space can be reclaimed
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Diagram of Process State
• Only one process is Running on any processor at any time 

• However, several processes may be Ready or Waiting

 9



Process Control Block (PCB)
• Information associated with each process  

• also called task control block 

• Process state – RUNNING, WAITING, etc 

• Program counter, CPU registers 

• CPU scheduling information 

• priorities, scheduling queue pointers 

• Memory-management information 
• memory allocated to the process 

• Accounting information – 
• CPU used, clock time elapsed since start, time limits 

• I/O status information – 

• I/O devices allocated to process, list of open files
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Process Control Block (PCB) 
Info. associated with each process 
� Process state 
� Program counter 
� CPU registers 
� CPU scheduling information  
 (e.g. priority) 
� Memory-management information 
 (e.g. base/limit register) 
� I/O status information 
� Accounting information 

To next PCB 
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Threads
• aka “lightweight processes” 

• a basic unit of program execution 

• Multiple threads may belong to one process 

• Threads of a given process share… 
• code section, data section, OS resources 

• Each thread has its own… 
• thread ID, program counter, register set, and stack
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Review (1)
• Definition of a process? 

• Difference between process and thread? 

• What are possible Process States? 

• What is a PCB, and what is its content? 

• How does Context Switch work?
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Process 
Scheduling
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Process Scheduling
• OS Purpose 

• Multiprogramming: maximize CPU utilization  
(i.e., runs some process at all times) 

• Time-sharing: interactivity, short latency  
(i.e., switches CPU frequently so user can interact 
with programs) 

• Scheduling 
• OS decides when to run each process and for 

how long
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Scheduling terms
• Degree of multiprogramming 

• number of processes kept in memory  
(as opposed to swapped out of main memory to disk) 

• I/O-bound processes 

• spends more time doing I/O than computing 

• many short CPU bursts 

• CPU-bound processes 

• spends more time doing computation 

• few but long CPU bursts
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Process Scheduling Queues
• Processes can migrate between different queues 

(i.e., switch among states) 

• Job queue (NEW state) 

• set of all processes in the system 

• Ready queue (processes in READY state) 

• set of all processes residing in main memory, ready and 
waiting to execute  

• I/O queue 

• set of process (in WAIT state) waiting for an I/O device
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"Queue Diagram" representation 
of  Process Scheduling
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Process Scheduling Queues
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Process Scheduling Queues 

I/O queue 
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Context Switch
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Context Switch
• Switch to a different process to run 

• Kernel saves the state of currently running process 

• Kernel restores the saved state of the target 
process 

• Overhead 

• time spent by OS, not productive time for the user 

• switching time: 1-1000 ms, depending on 
memory speed, #registers
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Hardware support for context 
switching

• instruction for store/load multiple registers 

• ARM instructions load, store, push, pop multiple regs 
LDM			{r2,	lr}				;;	(load	multiple)	 
STM			{r2,	lr}				;;	(store	multiple)	 
PUSH		{r0,r4-r7} 
POP			{r0,r10,pc}	 
-- all work on multiple regs 

• Register windows 

• Sun SPARC ISA uses sliding register windows 

• 8051 has four register banks
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Multitasking in Mobile Systems
• UI provides important hint on what needs to be scheduled 

• Single foreground process -- controlled via user interface 

• Multiple background processes – in memory, running, but not on the 
display, and with limits 

• Limits include single, short task, receiving notification of events, specific 
long-running tasks like audio playback 

• Purposes 

• Saves power, improve responsiveness 

• Android runs foreground and background, with fewer limits 
• A background process uses a service to perform tasks 

• A service can keep running even if the background process is suspended 

• A service has no user interface; is small in memory use
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Review: Context Switch
• CPU switches to another process 

• OS must save the state (register, etc) of the old process  

• OS loads the saved state for the new process via a 
context switch 

• PCB: representation of Context of a process 

• Overhead reduction 
• Some hardware provides multiple sets of registers per 

CPU ➔ multiple contexts loaded at once 

• efficient coding and data structure
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Operations on 
Processes
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Operations on processes
• process Creation 

• fork() = clone, exec() = replace 

• process Termination 
• exit() = voluntary, abort() = involuntary 

• wait() = sync with terminating child process 

• in addition to process switching 
• save / restore state, pick next to run (scheduling)
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Process Creation
• parent process creates children processes 

• family tree 

• each process has a unique identifier (pid) 
• Unix command  ps	-ael 

lists active processes
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init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005
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bash
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Options of Process Creation
• Sharing options:  

• share all resources 

• child shares subset 

• no sharing 

• Execution options 
• concurrent execution 

• parent waits until all children terminate
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Address Space Options
• child is a duplicate of parent  

• child runs the same program image as parent 

• communicate via shared variable 

• child program is not a duplicate  
• program replaced by a newly loaded program  

• communicate via message passing
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fork() system call
• parent clones itself 

• child process duplicates address space of the 
parent (i.e., a copy) 

• child and parent execute concurrently after fork 

• return value of fork()  

• child gets 0 

• parents gets pid of child
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exec() system call
• exec():  

• replaces process itself with specified program (in args) 

• restart process 

• Return value? 
• If successful, exec() does not return! because it runs the new program 

• But if error (e.g., program not found) then returns -1 with error code in a 
global variable errno 

• API variants of exec: 

• execlp(), execl(), execle(): path, arg0, arg1, ..., NULL 

• execv(), execvp(): path, argv[] 

• execvP(): file, searchpath, argv[]
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Process Creation in Unix/Linux  
Data memory

• Old implementation: 
• child is a full copy of parent 

• Current implementation: copy-on-write 
• no need to store extra copy of same data;  

• saves work of copying =>  both more efficient
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UNIX/Linux Process Creation 
� Memory space of fork(): 

¾ Old implementation: A’s child is an exact copy of parent 
¾ Current implementation: use copy-on-write technique to 

store differences in A’s child address space 

Originally 

free memory 

B 

free memory 

A 
kernel 

free memory 

B 

free memory 

A 
kernel 

A’s child 

After A does 
an fork 

free memory 

C 

B 

free memory 

A 
kernel 

After the child 
does an execlp  31



Unix Example
#include	<stdio.h>	
#include	<unistd.h>	//	for	fork()	
#include	<sys/wait.h>	//	for	wait() 
void	main()	{ 
		pid_t	A	=	fork(); 
		if	(!A)	{	//	child 
				printf("child\n"); 
				execlp("/bin/ls",	"ls",	NULL); 
		}	else	{	//	parent 
				printf("parent\n"); 
				int			status; 
				pid_t	pid=wait(&status); 
				printf("child	%d	done\n",	pid); 
		} 
		printf("process	%d	ends\n",	A); 
}

Output: 
parent	
child	
a.out	hello.c	readme.txt	
child	32185	done	
process	32185	ends
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wait()

execlp() implicit exit by child



Shell example
• Parses command line 

• extract program name and arguments 

• calls fork()  

• to create new process for new program 

• Child process calls exec()  

• to load in new program, becomes new program 

• Parent:  

• can either continue running shell or wait() for child to finish
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Process Termination
• option 1: voluntary 

• exit(status): for child to finish & return exit status to parent 

• could be implicit exit upon return from main() 

• option 2: involuntary (killed) 

• kill(pid,	sig): parent terminates child process by pid 

• Why? (1) child exceeds resource quota, (2) task no longer needed, 
(3) OS may have cascaded termination policy 

• OS clean-up: 

• OS reclaims all resources: memory, open files, I/O buffers 

• cascaded termination: parent dies => kill all its children (recursive)
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Process Termination
• wait() system call 

• called by parent to wait for one of its child processes to terminate 

• get that child's return status (exit code)   pid	=	wait(&status);	 

• OS won't release (recycle) child pid and table entry till parent calls wait()! 

• zombie process 
• dead child process that died before its parent calls wait() to find out... 

• zombie pid released when parent calls wait() 

• Orphan process: 
• a child process (alive) whose parent died 

• Solution: an ancestor process could call wait() to collect orphans 
Root process:  init (traditional Unix) or systemd (Linux)
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Interprocess 
Communication 

(IPC)
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Multiple processes
• Communicate or run independently? 

• independent: no resource sharing other than 
running on same processor 

• communicating processes or threads: exchange data 

• reasons for IPC 

• sharing data 

• speedup (multiple processors only) 

• convenience, modularity
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Communication methods
• Shared memory 

• requires more careful user 
synchronization 

• implemented by memory access, (i.e., 
read/write) faster speed 

• doesn't work across machines 

• Message passing 

• send(msg), receive(msg) 
as system calls 

• no conflict; call may block;  
more efficient for smaller data 

• on same machine or different machines

message 
passing

shared 
memory
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Interprocess Communication
• IPC Models 

• Shared Memory 

• Message passing 

• Examples: Shared memory 
• POSIX 

• Examples: Message Passing 
• Mach IPC, Pipes 

• Sockets vs. Remote procedure calls
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Shared Memory
• Establishing a region of shared memory 

• same address space or different spaces but mapped by OS 

• Doesn't work across machines! 

• Used for faster performance 
• no need for data copying; just work on shared data 

• OS involved only during setup, but not during actual read/write! 

• Need to determine the form of data and location 
• text or binary, struct, semantics 

• Ensure data not written simultaneously inconsistently 
• synchronize by locking or scheduling

 40



Problem of  
Producer-Consumer

• Producer-Consumer loop 
• Producer outputs data, Consumer inputs data 

• Possible use of buffer: queue (FIFO) with size B 
• in-pointer: next free position 

• out-pointer: position of first available 

• FIFO empty when in == out 

• FIFO full when (in+1)%B == out 

• This allows at most B-1 items in the queue, since one can’t tell if 
the buffer is empty or full. 

• Constraints: bounded vs unbounded bufferChapter3 Processes Concept Operating System Concepts – NTHU LSA Lab 37 

Consumer & Producer Problem 

in 

out 

� Producer process produces information that is 
consumed by a Consumer process  

� Buffer as a circular array with size B 
¾ next free: in 
¾  first available: out 
¾  empty: in = out 
¾  full: (in+1) % B = out 

�  The solution allows at most (B-1) item in the buffer 
¾ Otherwise, cannot tell the buffer is fall or empty 
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Pseudocode for  
Shared memory Producer

• item next_produced; // item is a data type 
while (true) { 
  next_produced = make_item(); 
  while(((in+1)%BUFFER_SIZE)==out) { 
    // buffer is full, so we wait (polling) 
    // assume consumer can run when  
    // producer is polling. 
    yield; // cooperative; nothing if preemptive 
  } 
  buffer[in] = next_produced;  
  in = (in+1)%BUFFER_SIZE;   
  // in is modified only by producer 
}
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/*producer*/ 
while (1) { 
 while (((in + 1) % BUFFER_SIZE) == out) 
  ; //wait if buffer is full 
 buffer[in] = nextProduced; 
  in = (in + 1) % BUFFER_SIZE; 
} 

/*consumer*/ 
while (1) { 
 while (in == out); //wait if buffer is empty 
 nextConsumed = buffer[out]; 
  out = (out + 1) % BUFFER_SIZE; 
} 

Shared-Memory Solution 

/* global data structure */ 
#define BUFSIZE  10 
item buffer[BUFSIZE]; 
int  in = out = 0; 

in out 

in out 

“in” only modified by producer 

“out” only modified by consumer 
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(in+1)%BUFFE_SIZE  
== out 

means full



Pseudocode for  
Shared memory Consumer

• item next_consumed; // item is a data type  
while (true) {  
  while (in==out) {  
    // buffer is empty, so we wait (polling)  
    // assume producer can run when  
    // the consumer polls.  
    yield; // if cooperative; nothing if preemptive  
  } 
  next_consumed = buffer[out];  
  out = (out+1) % BUFFER_SIZE;  
  // out is modified only by consumer  
  use_item(next_consumed);  
}
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/*producer*/ 
while (1) { 
 while (((in + 1) % BUFFER_SIZE) == out) 
  ; //wait if buffer is full 
 buffer[in] = nextProduced; 
  in = (in + 1) % BUFFER_SIZE; 
} 

/*consumer*/ 
while (1) { 
 while (in == out); //wait if buffer is empty 
 nextConsumed = buffer[out]; 
  out = (out + 1) % BUFFER_SIZE; 
} 

Shared-Memory Solution 

/* global data structure */ 
#define BUFSIZE  10 
item buffer[BUFSIZE]; 
int  in = out = 0; 

in out 

in out 

“in” only modified by producer 

“out” only modified by consumer 
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in == out  
means empty



Interprocess Communication
• IPC Models 

• Shared Memory 

• Message passing 

• Examples: Shared memory 
• POSIX 

• Examples: Message Passing 
• Mach IPC, Pipes 

• Sockets vs. Remote procedure calls
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Message-Passing Communication
• Mechanism for processes to communicate and 

synchronize their actions 
• processes communicate without resorting to shared variables 

• Two fundamental operations for IPC (pseudocode) 
• send(h,	msg) // could be fixed- or variable message size 

• receive(h,	&buf) // # bytes, status may be additional params 

• Assumption before communicate 
• processes need to establish a communication link first!!! 

• h (as in send(h,	msg), receive(h,	&buf)) could be a "handle" 
to the link, a process, or mailbox
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Communication Links in  
Message Passing

• How are links established? 

• Can a link be associated with > 2 processes? 

• Between two processes, how many links 
can there be? (multiplicity) 

• What is the link capacity? 

• Data length:  fixed- or variable-sized msg? 

• is the link unidirectional or bidirectional?
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Implementation of 
Communication Links

• Physical link 

• shared memory 

• hardware bus 

• network 

• Logical 

• Naming: direct or indirect? symmetric or asymmetric naming? 

• Synchrony: blocking or nonblocking? (synchronous vs. 
asynchronous) 

• Buffering: automatic or explicit buffering? 

• Data Copying: send by copy or by reference?
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Direct (message passing) 
Communication

• Processes must name each other explicitly 
• send(P,	message): send message to process P 

• receive(Q,	&buf): receive a msg from process Q into 
buf  

• Properties of communication link 
• Links are established automatically (or hardwired) 

• One link is associated with exactly two processes, and  
between a pair of processes, there exists exactly one link 

• They may be bidirectional (usual) or unidirectional
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Process symmetry
• symmetric 

• sender and receiver name each other 

• send(P, msg)    ....    receive(Q, &buf) 

• asymmetric: 
• sender names the target process to send to 

• receiver receives from ANY process and gets 
sender ID
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Producer-consumer by  
Direct Communication

• /* producer */ 
• while (1) { 

   send(consumer, nextProduced);  
} 

• /* consumer */ 
• while(1) { 

  receive(producer, nextConsumed);  
} 

• Issue: Limited modularity 

• if name of a process changed, all old names need to be 
updated
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Indirect Communication
• Mailbox, aka ports 

• send message to mailbox or receive from mailbox, 
instead of direct send-receive 

• Each mailbox has a unique ID 

• processes must share a mailbox in order to communicate 

• Link properties 

• Link established only if processes share a common mailbox 

• a link may be associated with multiple processes 

• Each pair of processes may share several communication links 

• Link may be unidirectional or bidirectional
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Indirect Communication 
� Mailbox sharing 

 
 
 

� Solutions 
¾ Allow a link to be associated with at most two processes 
¾ Allow only one process at a time to execute a receive 

operation 
¾ Allow the system to select arbitrarily a single receiver.  

Sender is notified who the receiver was 

P1 P2 P3 

Mailbox 

send recv? recv? 
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Indirect Communication 
• Operations 

• create a new mailbox (port) 

• send and receive messages through mailbox 

• destroy a mailbox 

• Primitives 
• send(A, msg) // send msg to mailbox A 

• receive(A, &buf) // receive a msg from mailbox A
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Indirect Communication
• What happens when mailbox is shared? 

• P1, P2, P3 share mailbox A 

• P1 sends; P2 and P3 both receive 

• Who gets the message? 

• Possible options (OS dependent) 

1. Allow a link to be associated with at most two processes 

2. Allow only one process at a time to execute a receive() 
operation 

3. Allow the system to select arbitrarily the receiver 

4. Sender is notified who the receiver was.
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Synchrony in Messaging
• Blocking (“synchronous”) call:  

• send/receive does not return till done  
=> how regular functional calls work 

• Nonblocking (“asynchronous”) call:  
• send/receive returns immediately,  

even before the communication is completed!! 

• a separate call to check if done (like polling) 

• may also use a callback for notification!
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Synchrony in send/receive
• Blocking send:  

• sender is blocked until the message is received by the receiver or 
mailbox 

• Blocking receive:  
• receiver is blocked until a message has arrived and can be received 

• Nonblocking send:  
• sender writes message to a buffer and continues operation without 

waiting for send to complete =>  buffer is required! 

• Nonblocking receive:  
• sender receives either an arrived (and queued) memory or receives 

no message, but does not block in either case.
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Buffer and Synchrony
• Zero buffer 

• blocking send, blocking receive (rendezvous) 
=> earlier one blocks until the later one ready to 
exchange 

• Bounded buffer 
• sender is blocked if buffer is full; else not blocked 

• receiver blocked if buffer is empty; else not blocked 

• Unbounded buffer 
• sender never blocks; receiver blocks only if buffer empty
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Review (3)
• Shared memory vs Message Passing 

• Direct vs Indirect message-passing 

• Blocking vs Nonblocking
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